Using Mobile to improve Agriculture Incomes

Conventional Approach

- Any day to any market
- No information regarding markets and commodities rates.
- Returns depends solely on market demand and supply pattern.
- Fear of surplus supply of commodities than the demand.

ICT Approach

- Best day of trade with market options
- Rates of commodities
- Information on schemes/programmes of
 - Department of Agriculture
 - Horticulture Department
 - Line Departments
 - Government Schemes

Farmer

- Farmer
- Technology transfer, capacity building, market intelligence, etc.
- Returns
- Best Deal
 - Prior information regarding market trends/price provide better returns.
 - Weather forecasting and climatic information provides better scope for the advance crop planning.
 - Experts advice on crop management reduce crop loss.
 - Advice on cure and precaution from disease provides better yield.
 - Transfer of Technology gives extra edge to farmers.

Cumulative information

- Rates in bulk markets for different commodities.
- Weather forecasting (rain-fall, thunder storm, hail etc.)
- Information of temperature, humidity etc.
- Expert advice.
- News & schemes

Rural Marketing Information System

- Expert Advice, Public welfare Schemes and Projects
- Forecasting of rain-fall, temperature, humidity, thunder storm, hail

Queries, feedback, etc.

- Institutes/Agencies

Advises and information by experts

- Agriculture University

Feedback

- Metrological Department
ICT & Community Carbon Forestry

The Indian Himalayan Story

Presented by Pushkin Phartiyal

1. OBJECTIVE
 > Explore the potential of existing Community Forests Management (CFM) in carbon saving.
 > Justify CFM as a recognizable strategy under CDM/REDD.
 > Capacity building of the locals in:
 e. Measuring carbon stocks using modern gadgetry.
 f. Submit projects for climate finance.
 > Bring the topic of CFM as carbon reduction measure to the attention of national and international decision makers.
 > Inclusion of C-services in the state level forestry initiatives.
 > Using carbon project as a triggering factor for recognition of eco-system services, in general.

2. Uttarakhand’s VAN PANACHAYATS (VPs)
 (Community Forestry Council)
 > VPs came into existence in 1930’s, following agitations against the forest reserves under the organized forestry.
 > A VP consist 9 elected members (with at least 4 women) with a Sarpanch (Head of council).
 > At present 12089 VP covering more than 0.5 million ha. Land (16% of the total forest of the state).

3. General CONSERVATION practices
 > Forest guards on payment basis/voluntarily.
 > Regulation on fodder collection.
 > Firewood collection for cooking and other purposes limited to dead, standing and fallen branches.
 > Fire control though weakening.

4. STRATIFYING the forest area
 > Forest stratified through survey FRAs and mapping by communities.
 > Criteria for stratification
 - Difference in dominant trees species.
 - A sharp difference in the stocking density of trees/crown coverage.
 - Difference related to aspect and position along a hill slope.

5. BOUNDARY marking of the identified strata
 > Basic training in use of GPS and Arc Pad GIS software.
 > Boundary marking by walking along the periphery of the strata with field investigators.

6. Pilot SURVEY for variance estimation
 > Jointly by village investigators and project team members.
 > Pilot inventory in each stratum for estimating variance in carbon stock.
 > 15 circular plots placed within a stratum.
 > Basal area estimated using girth of tree.
 > Sampling intensity (number of permanent plots) determined.

7. TRAINING of team member/village investigator in GPS and Palmtop computers

8. Permanent plot layout and measurements using village level investigators
 > 15-18 100 m² circular plots in each stratum.
 > Density and circumference of tree, seedling, etc. estimated.
 > Tree biomass estimated by allometric equations.
 > Biomass of herbs and shrubs by destructive sampling.
 > Soil carbon upto 1.5 m depth with Walkey and Black (1948) rapid titration methods.

9. Carbon SEQUESTRATED annually in the VPs
 Carbon sequestered by 15 VPs worth US $ 43832 (@ US $ 13 per ton), from 1124 ha. (1291 household) @ 3 tC/ha/yr.